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Figure 1. Given a point cloud as input (left column), PAG can recover its radiance field and render photo-realistic images (middle columns).
The results support image-based reconstruction algorithms for obtaining meshes (right column).

Abstract

Point clouds, being sparse samples from a surface, inher-
ently produce blur and holes in rendered images. Although
previous methods tackle hole-filling by representing point
clouds in 3D neural representation and utilizing neural de-
coders or neural radiance fields for rendering, they lack a
unified representation of global and local information, re-
stricting sensitivity to texture changes and rendering qual-
ity. To address this limitation, we present Point As Gaus-
sian (PAG), which integrates a hybrid neural radial basis
function (H-NRBF) to enable the neural network to capture
both local and global features of the point cloud, conse-
quently achieving hole-filling and improving the rendering
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quality of local details. Moreover, drawing inspiration from
recent 3D Gaussian Splatting, we adopt 3D Gaussian as the
expression of the radiance field predicted by our model, al-
lowing the model to concentrate on learning point-based
features. Extensive experiments on the synthetic dataset
ShapeNet and the scanned dataset Google Scanned Objects
demonstrate that our model can render the input point cloud
into a photo-realistic image without additional optimization
or fine-tuning. Additionally, our method offers an alterna-
tive approach for mesh reconstruction from point clouds by
rendering images from point clouds and subsequently utiliz-
ing image-based reconstruction algorithms.

1. Introduction

Point cloud rendering, which strives to generate photo-
realistic images, is in high demand due to the widespread



use of point primitives for representing 3D shapes, offer-
ing versatility and efficiency. This technique finds numer-
ous applications across various domains, such as visualizing
real scanned or LIDAR point clouds, augmented and virtual
reality systems, and the film and video game industry.

Point cloud rendering remains challenging due to the
sparse nature of point clouds as discrete surface samples.
With the emergence of deep learning approaches, early
learning-based methods [17, 18, 43] typically project the
point cloud into a feature map and use a neural decoder
to render images. Although this improves hole-filling, ar-
tifacts persist as the feature map inherits the sparsity of
points, and the texture quality is unsatisfactory. The intro-
duction of neural representations has led to new methods
for point cloud rendering. Previous works employ a global
latent code [26] to represent the 3D shape but often pro-
duce rendering results with limited detail and exhibit con-
strained generalization capabilities. Recent approaches uti-
lize voxel [5], triplane [7], or triple volume [10] encoding
for entire point clouds and leverage 3D convolutional neu-
ral networks [28] to enhance local information modeling.
These approaches achieve impressive results in hole-filling
and significantly improve texture details. However, chal-
lenges remain as compressing points into voxel or triplane
representations can lead to further information loss, making
it difficult to restore the texture and shape of the surface.

Recent works, such as 3DS2V [48] and Michelan-
gelo [49], have employed global latent sets (GLS) based
on learnable query tokens to model the global features of
point clouds. These models directly learn global features
from positionally embedded points through cross-attention
modules, bypassing additional compression or downsam-
pling. Although these methods effectively restore the ge-
ometry of the surface, they face difficulties in recovering
the surface’s radiance field, which is more complex and ex-
hibits more abrupt changes than geometry. To address this
challenge, we designed a local neural radial basis function
(L-NRBF) that combines with GLS to form a hybrid neural
radial basis function (H-NRBF). H-NRBF can better model
both local and global information of point clouds. Specif-
ically, for each point, we identify the point with the most
significant difference among its nearest neighbors and use
it as an additional feature, modeling the abrupt changes in
local patches. Through cross-attention, the global informa-
tion from the GLS can be integrated with local information,
enabling the prediction of a high-quality radiance field.

In addition to effectively representing the information in
point clouds, radiance field and rendering techniques are
also essential for point cloud rendering. Early methods of-
ten utilized neural network decoders to generate final im-
ages, and several high-quality neural decoders were pro-
posed [1, 12, 13]. However, these approaches primarily
considered 2D feature maps and did not directly model 3D

information, resulting in reduced perceptual quality for the
color information of the point cloud and rendering blurred
images. With the growing popularity of Neural Radiance
Fields (NeRF) [23], recent methods predominantly produce
images through volume rendering based on predicted neu-
ral radiance fields [10, 11, 44]. Although these approaches
better utilize 3D information, recovering a continuous neu-
ral radiance field from point clouds remains challenging.
We observed the recent 3D Gaussian Splats (3DGS) [16],
which effectively leverages point-primitives by modeling
3D Gaussian kernels on discrete points, naturally corre-
sponding to the information represented by Hybrid Neural
Radial Basis Functions (H-NRBF). Furthermore, by adopt-
ing 3D Gaussian Splats as the expression of radiance field,
the model only needs to predict the corresponding 3D Gaus-
sian parameters for recovering the radiance fields rather
than a continuous neural radiance field.

In summary, our contributions can be outlined: 1) This
paper introduces PAG, which leverages a meticulously de-
signed H-NRBF to represent the input’s local and global
features, thereby enhancing the model’s ability to predict
superior radiance fields. 2) Once trained, PAG can perform
forward translation of points to 3D Gaussians without ad-
ditional optimization or fine-tuning. 3) Extensive experi-
ments conducted on the ShapeNet [4] and Google Scanned
Objects datasets [6] demonstrate that our method can ren-
der photo-realistic images from point clouds. 4) PAG offers
an alternative solution for reconstructing meshes from point
clouds [15].

2. Related Work
We briefly review previous literature of Point cloud render-
ing, 3D neural representation, and radiance field from com-
puter graphics and computer vision communities. Compre-
hensive elaborations refer to the surveys [30, 40, 41].

2.1. Point Cloud Rendering

The common graphics-based approach for rendering
point cloud is rasterization, which projects points onto the
2D plane [20]. However, due to the sparsity of point clouds,
holes exist between points, leading to rendering flaws [8].
Classical splatting algorithms place small discs at each
point to fill holes [29]. However, the point position varies
from different input point clouds and further results in diffi-
culty estimating the shape of discs [37].

Recent neural decoder-based methods [3, 22] propose
integrating neural networks to enhance point cloud render-
ing. NPBG [2] rasterizes the point cloud as 2D feature maps
and renders final images via neural networks. The neural
decoder reduces the rendering artifacts, and ADOP [36] fur-
ther disentangles the rendering process with exposure time
and white balance. To enhance the generalizability of neu-
ral decoder-based methods, NPBG++ [32] extended neural



decoder-based methods from per-scene optimization to sup-
port general input. However, these approaches still struggle
with photo-realistic rendering due to the aliasing caused by
the neural networks [14].

Moreover, by applying volume rendering techniques,
neural radiance field (NeRF) [23] achieves rendering photo-
realistic images. Recently, PointNeRF [44] has combined
point cloud with volume rendering, which extracts point
features of any sampling point via KNN (K Nearest Neigh-
bors) to enhance rendering quality. Since PointNeRF re-
quires a per-scene optimization, TriVol [10] proposes a gen-
eral solution, where they encode point clouds as triple slim
volumes with sparse 3D UNet. Rendering point clouds by
volume rendering facilitates the image’s quality.

2.2. 3D Neural Representation

Representing point clouds and 3D shapes with neural prim-
itives is significant for neural networks performing down-
stream tasks, e.g., rendering [35], reconstruction [45], and
generation [9].

DVR [25] encodes 3D shapes as a global latent code,
which is lightweight but limited for rendering high-quality
images. In contrast, DeepVoxels [38] embeds shapes as
3D voxel grids of features. However, voxel-based neural
representation suffers from computation costs. Thus, Con-
vOcc [28] devised the tri-plane representation, employing
three orthogonal feature planes for decoding more details
in high computation efficacy. Recently, inspired by radial
basis function, 3DILG and 3DS2V [47, 48] propose an-
other technique for representing point clouds as irregular
latent grid and latent set. Furthermore, Michelangelo [49]
proposes learnable latent set for representing point clouds
via leveraging learnable queries. Although these methods
preserve information for high-quality shape reconstruction,
such rough modelings are still limited to capturing and re-
covering the fine details of surface textures.

2.3. Radiance Field

Recently, significant breakthroughs have been made in ra-
diance field methods. These advancements can be broadly
categorized into two types: point-based radiance fields and
neural radiance fields.

Point-based radiance field. Seminal work extends point
primitives to 3D Gaussian and introduces EWA (ellipti-
cal weighted average) filtering for anti-aliasing [50, 51].
With the development of differentiable rendering tech-
niques, DSS [46] proposes a plug-and-play module in deep-
learning architectures, and Pulsar [19] devised a sphere-
based differentiable renderer for fast rasterization. No-
tably, a recent breakthrough in 3D Gaussian Splatting
(3DGS) [16] introduces a tile-based differentiable rasterizer
and dramatically enhances the rendering speed and qual-
ity. However, 3DGS requires a per-scene optimization, and

leveraging its power to improve the rendering capabilities
of forward models remains explored.

Neural radiance field. NV [21] and SRN [39] propose
differentiable ray marching to introduce backward mapping
rendering to deep learning frameworks. Although these
methods have impressive results, rendering complex shapes
and high-resolution images remains challenging. NeRF im-
proves the rendering quality by importance sampling and
positional encoding, and InstantNGP [24] speeds up by
leveraging multi-resolution hash grid and tiny multi-layer
perceptrons.

3. Approach
Effectively capturing global and local information of the in-
put point cloud is crucial for recovering the radiance field
for rendering. To address this, we propose the hybrid neu-
ral radial basis function (H-NRBF) and develop Point as
Gaussian (PAG) based on it. Specifically, PAG consists of
an H-NRBF encoder and a radiance field decoder. The H-
NRBF encoder represents the global and local information
of the point cloud, while the radiance field decoder recon-
structs the radiance fields and renders images under given
viewpoints. Given that the color and position of an input
point cloud provide a natural initialization for 3D Gaussian
Splat, and 3D Gaussian Splatting (3DGS) [16] offers an ef-
ficient differentiable rasterizer for 3D Gaussian-represented
scenes, we adopt 3DGS as the radiance field in our frame-
work.

3.1. Preliminary

Since PAG harnesses the power of 3DGS, we briefly explain
the 3DGS in the following.

3DGS is defined by a 3D Gaussian set, and each 3D
Gaussian contains a covariance matrix Σ centering at a
point (mean) µ in the world space:

G(x) = e−
1
2 (x−µ)TΣ−1(x−µ) (1)

Then, the covariance matrix is represented with a scaling
matrix S and a rotation matrix R to ensure it is positive and
semi-definite,

Σ = RSSTRT (2)

The scaling and rotation matrix can trivially convert to a 3D
vector s ∈ R3 and a quaternion vector r ∈ R4.

Following previous works [17], 3DGS leverages point-
based α-blending for computing the color of each pixel C
in 2D images. It blends N ordered points overlapping the
pixel,

C =

N∑
n=1

cnα
′
n

n−1∏
j=1

(1− α′
j) (3)

where cn is the color of each point represented with spheri-
cal harmonic [33] and the blending weight α′

n is determined



by evaluating the 2D projection of a 3D Gaussian, which is
then multiplied by the opacity α of each point.

To succinctly summarize, 3DGS parameterizes a point in
point clouds via five learnable vectors: 1) a position µ, 2) a
color c, 3) a scaling vector s, 4) a quaternion vector r, and
5) an opacity α.

3.2. Point As Gaussian

We devise H-NRBF to represent the input point cloud and
predict the parameters of 3DGS. The following describes
the H-NRBF, H-NRBF encoder, and radiance field decoder.

3.2.1 Hybrid Neural Radial Basis Function

H-NRBF adapts latent sets to be suitable for predicting the
radiance field. While latent sets effectively represent and re-
construct surface points or signed distance functions, their
performance in predicting radiance field parameters is often
suboptimal due to the smoother nature of shape compared
to texture. Therefore, texture functions necessitate more re-
fined local modeling for accurate prediction. Subsequently,
the H-NRBF integrates a proposed local neural radial basis
Function (L-NRBF) with the global latent sets (GLS) for
learning texture functions of the input point cloud.

The L-NRBF models the information of a local patch in
the point clouds. Given a center point Po with position xo

and color co from an arbitrary local patch of an input point
cloud and the center point’s spatially nearest K points are
denoted as {xk, ck}Kk=1, where xk is the position, and ck is
the color. An L-NRBF on the local patch FL−NRBF (Po) is
written as

FL−NRBF (Po) = max(FNN (xc − xk, cc − ck)
K
k=1) (4)

where FNN is a neural network. Since the dissimilarity is
determined by the distance of textural and spatial space, L-
NRBF is sensitive to the texture and geometry of the local
patch on point clouds.

For the GLS, we follow learnable latent sets {zi}Li=1 in
Michelangelo [49] and keep the latent vector zi ∈ Rd in a
coordinate-free structure, where L is the number of latent
vectors and d is the dimension of latent vectors. We denote
GLS FGLS with the cross-attention operation as:

FGLS(Po) =

L∑
i=1

v(zi)
eq(Po)

T k(zi)/
√
d

Z(Po, {zi}Li=1)
(5)

where Z(Po, {zi}Li=1) =
∑L

i=1 e
q(Po)

T k(zi)/
√
d is a nor-

malizing factor. Therefore, our H-NRBF FH−NRBF com-
prises the L-NRBF, and GLS is the following learnable
function composition:

FH−NRBF (Po) = (FGLS ◦ FL−NRBF )(Po) (6)
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Figure 2. Illustration of hybrid neural radial basis function (H-
NRBF). H-NRBF represents a center point Po of input point cloud
based on its nearest neighbors and global features (middle). We
design local neural radial basis function (L-NRBF) for modeling
its dissimilarity from nearest neighbors in local patch (left). Our
model characterizes the global feature with global latent set (GLS)
{Zi}Li=1 based on learnable query tokens (right).

3.2.2 H-NRBF Encoder

Two components compose the H-NRBF encoder: a global
encoder for representing point clouds to global latent sets
and a patch aggregator for capturing local latent sets. Given
that input point cloud P ∈ RM×6 contains M points, each
point Pi has a coordinate and color {xi ∈ R3, ci ∈ R3}.
We utilize a linear layer to project the Fourier positional en-
coded point clouds P to the input X ∈ RM×d of global
encoder and a cross-attention layer to inject the position
and color information of the point cloud into the learnable
queries Q ∈ RL×d, where L is the length of learnable
queryies. Benefiting from the cross-attention operation, our
model can directly extract information from the input point
cloud without additional compression or transformation op-
erations. To enhance the model’s ability to encode the point
cloud into global latent sets Z ∈ RL×d, we incorporate a
UNet-ViT following the cross-attention layer, consisting of
self-attention layers and skip connections.

At the same time, we devise the patch aggregator to ex-
tract local latent sets. Specifically, we apply the K-nearest
neighbor algorithm for each point Pi in the point cloud P
and extract the local latent set following the L-NRBF in
quation 4, where FNN is a PointNet-like module [31].

3.2.3 Radiance Field Decoder

Taking the global and local latent sets, and given point cloud
P as input, the decoder aims to predict a radiance filed for
rendering high-quality images. Following equation 6, the
points are converted to the 3D Gaussians with additional
tiny projection layers. Since the point already provides an
initialization for the position µ of 3D Gaussian, our model
predicts an offset based on the coordinates x of points by
the position head Fµ:

µ = x+ Fµ(FH−NRBF (P )), (7)
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Figure 3. Pipeline of Point as Gaussian (PAG). PAG comprises a
global encoder, a patch aggregator, and a radiance field decoder.
Given a point cloud, the PAG model employs a learnable query
to represent the positional embedded point cloud as global latent
sets through the global encoder. Simultaneously, the patch aggre-
gator extracts local latent sets based on the position and color of
points from the input. Subsequently, the radiance field decoder
predicts the parameters of the 3D Gaussian Splats based on both
local and global latent sets. Ultimately, PAG renders images from
point clouds with the predicted 3D Gaussian Splats under specified
viewpoints.

The color of 3D Gaussian is predicted with the color head
Fc and we use the sigmoid as activation function to make
sure c ∈ [0, 1):

c = sigmoid(Fc(FH−NRBF (P ))) (8)

The decoder predicts the opacity α in a similar way with by
utilizing the opacity head Fα:

α = sigmoid(Fα(FH−NRBF (P ))) (9)

We follow a similar approach in 3DGS for predicting the
rest scaling vector s and quaternion vector q:

s = exp(Fs(FH−NRBF (P ))) (10)
q = norm(Fq(FH−NRBF (P ))) (11)

where Fs is the scaling head and Fq is the quaternion head.

3.3. Training Objectives

We optimize PAG via three objectives, rendering loss Lrgb,
LPIPS loss LLPIPS , and total variance regularizer on the
scaling vector Lscaling . Following 3DGS [16], the render-
ing loss is a weighted sum of an L1 loss and a D-SSIM
term:

Lrgb = (1− λ)L1 + λLD−SSIM (12)

During the training process, we leverage a total variance
regularizer for the scaling vector to prevent the 3D Gaus-
sian from becoming dramatically elongated, which would
result in a significant amount of noise in the subsequent

point cloud-rendered images, reducing their quality. The
regularizer for a scaling vector s = [s1, s2, s3] is:

Lscaling = mean (|s0 − s1|+ |s1 − s2|+ |s2 − s0|)
(13)

To summarize, the overall objectives for supervising PAG is

L = λrgbLrgb+λLPIPSLLPIPS+λscalingLscaling (14)

4. Experiments

4.1. Implementations

PAG comprises a cross-attention encoder, a UNet-ViT, and
a cross-attention decoder. Each transformer layer consists
of 12 heads and 64 dimensions for each head, Layer Nor-
malization, Feed-Forward Network with 3072 dimensions,
and GELU activation. The learnable query embeddings
contain 512 tokens in 768 dimensions. We use an AdamW-
based optimizer with a 1e-4 learning rate. Moreover, the hy-
perparameter in Equation 12 is λ = 0.2, and in Equation 14,
it is λrgb = 1, λLPIPS = 2, and λscaling = 0.05. The
framework is implemented with PyTorch [27] and trained
on 8 Tesla V100 GPUs.

4.2. Settings

Dataset. We validate PAG on ShapeNet-Car, ShapeNet-
Ensembled, and Google Scanned Object. ShapeNet-
Ensembled (ShapeNet-Core V2) [4] contains about 50,000
synthetic objects in 55 categories, and ShapeNet-Car is
the ’Car’ category within ShapeNet-Ensembled, including
3000 objects. Google Scanned Object [6] provides about
1,000 objects in 17 categories. Notably, all data in Google
Scan Object are from the real world.

Metrics. Following TriVol and PBNG, we employ
PSNR (Peak Signal-to-Noise Ratio), SSIM (Structural Sim-
ilarity Index Measure), LPIPS (Learned Perceptual Image
Patch Similarity) and FID (Frechet Inception Distance). For
PSNR and SSIM, a higher value indicates a better result,
and the reverse is true for the other metrics.

Baselines. We compare PAG with five baselines. Py-
torch3D [34], replacing points with circulars, and render-
ing point clouds by rasterization. NPBG++ [32], a neu-
ral decoder-based method. TriVol [10] employs NeRF to
render images of point clouds. Besides, L-NRBF-MLP
and Triplane-Transformer are two natural baselines. L-
NRBF-MLP utilizes a PointNet-like module [31] to extract
features of a point from its adjacents and converts point
clouds to 3D Gaussians by MLPs. Triplane-Transformer
leverages a learnable triplane within transformer architec-
ture for encoding the point cloud and predicts 3D Gaussians
by querying points from the point cloud in the triplane. Both
two methods render images via splatting.



ShapeNet-Car ShapeNet-Ensembled Google Scanned Object

PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓
Pytorch3D [34] 25.97 0.924 0.087 124.70 24.89 0.900 0.120 96.21 25.66 0.890 0.107 109.38
Triplane-Transformer 29.30 0.975 0.041 44.78 28.45 0.962 0.065 46.85 28.78 0.953 0.069 76.47
L-NRBF-MLP 28.59 0.971 0.041 40.97 28.11 0.960 0.076 53.51 27.53 0.952 0.063 62.20
NPBG++ [32] 30.69 0.974 0.055 91.50 28.83 0.962 0.082 67.14 31.87 0.965 0.065 80.16
TriVol [10] 32.11 0.980 0.043 48.07 30.43 0.968 0.077 58.43 33.90 0.973 0.055 55.22
Ours 33.36 0.987 0.023 22.24 33.38 0.982 0.043 28.26 34.72 0.984 0.031 26.60

Table 1. Quantitative evaluation on rendering images. We compare PAG with baselines on ShapeNet-Car (single-category synthetic
dataset), ShapeNet-Ensembled (cross-category synthetic dataset), and Google Scanned Object (cross-category real scanned dataset). The
numerical results indicate that our model outperforms the others. (↑ indicates that a higher value represents a better performance, and ↓
indicates that a lower value represents a better performance)
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Figure 4. Qualitative comparison of rendering images. The results demonstrate that our model overwhelms the baselines regarding image
quality. Upon zooming in, it becomes evident that the point cloud rendering produced by PAG has no holes and exhibits superior detail in
patterns and characters. Moreover, the fine-grain texture comparison further indicates the effectiveness of our H-NRBF modeling.



GLS L-NRBF PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓
26.11 0.924 0.088 97.03
27.53 0.952 0.063 62.20
34.72 0.984 0.031 26.60

Table 2. Quantitative ablation study on the hybrid neural radial ba-
sis function (H-NRBF). To validate the effectiveness of each mod-
ule in H-NRBF, they are deactivated in turn, with a tick indicating
the use of the corresponding module. The results reveal that using
global latent sets (GLS) or local neural radial basis function (L-
NRBF) only achieves lower performance than the last row, which
uses all modules. This finding underscores the effectiveness of our
proposed model and the significant contribution of each module to
the overall performance.

4.3. Experimental Comparisons

We evaluate PAG against baseline methods on ShapeNet-
Car, ShapeNet-Ensembled, and Google Scanned Object
datasets. Generally, we adhere to conventional settings,
sampling 100k points from each object as input. The quan-
titative results are presented in the Table 1. These results
demonstrate that our model surpasses the baselines in ren-
dering point clouds from single-category synthetic, cross-
category synthetic, or cross-category real-world scanned
datasets. A comparison of the qualitative results in the Fig-
ure 4 reveals that the Triplane-Transformer can predict a
reasonably accurate radiance field overall. Conversely, the
L-NRBF-MLP can predict results with better details, al-
beit with less sensitivity to global contours. The NPBG++
method, which employs a neural decoder, has almost re-
solved the rendering holes in the results, but noticeable ar-
tifacts persist. Benefiting from the local modeling of triple
volume and the rendering approach of NeRF, TriVol per-
forms well in most cases. However, blurring occurs when
rendering textures such as complex objects or scanned point
clouds. PAG, leveraging the hybrid neural radial basis func-
tion (H-NRBF) to represent point clouds, allows for render-
ing images with precise contours and realistic textures.

4.4. Ablations

To assess the effectiveness of the proposed module in PAG,
we conducte ablation experiments on the H-NRBF. Addi-
tionally, we examine the impact of the distribution differ-
ence between training and testing data on the model’s per-
formance.

Effectiveness of the hybrid neural radial basis func-
tion (H-NRBF). Experiments were conducted on the
Google Scanned Objects dataset, with the results reported in
the Table 2. The first row depicts the model’s performance
when only utilizing GLS (global encoder and naive cross-

L-NRBF FullGLS

Figure 5. Qualitative ablation study on the hybrid neural radial ba-
sis function (H-NRBF). The first column shows the rendering from
the model using global latent sets (GLS) only, which shows precise
contours, but the texture is blurry. In contrast, the second column
shows the results from the model using the local neural radial basis
function (L-NRBF) only, which has better texture details, but the
contour is blurry. The last row shows that using H-NRBF leads to
precise contour and high-quality texture.

attention decoder). In contrast, the second row indicates
the performance when only employing L-NRBF (L-NRBF
with a tiny multi-layer perceptrons decoder). These per-
formances exhibit a significant loss compared to the third
row, which applies H-NRBF in the PAG, thereby demon-
strating the effectiveness of H-NRBF. The Figure 5 presents
a visualization of the ablation study. The first column dis-
plays results using only global latent sets, the second col-
umn presents results with only L-NRBF (Local Neural Ra-
dial Basis Function), and the final column illustrates results
from the complete PAG method. Comparing the first and
second columns, it becomes apparent that when only GLS is
used, the model has a better global perception, and the gen-
erated 3D Gaussian Splat can render images with precise
contours. However, it lacks local information modeling, re-
sulting in defective texture details. The second column ex-
hibits better details thanks to L-NRBF’s local information
modeling, but the absence of global information results in
blurred boundaries of the rendered objects. In contrast to
the first two columns, the complete PAG method benefits
from the fusion of global and local information, maintain-
ing precise contours of the rendered target while enhancing
the texture details.

Impact of data distribution. To better validate the
capability of PAG, we conducted ablation experiments on
the training data. Specifically, we trained the model using
ShapeNet-Car, ShapeNet-Ensembled, and Google Scanned
Objects datasets and tested it on ShapeNet-Car. The re-



ShapeNet-Car

PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓
ShapeNet-Car 33.36 0.987 0.023 22.23
ShapeNet-Ensembled 32.71 0.984 0.028 43.75
Google Scanned Object 30.87 0.977 0.043 74.83

Table 3. Ablation study on the dataset. We train the model on three
datasets and evaluate its performance on the ShapeNet-Car dataset.
The results indicate that the performance of the PAG model is com-
parable across these different training datasets, demonstrating the
stability of our model.

sults are shown in the table 3, where the first row repre-
sents training and testing using ShapeNet-Car. The second
and third rows represent training on ShapeNet-Ensembled
and Google Scanned Objects and testing on ShapeNet-Car.
The first row in the table indicates that the model achieves
the best performance when the training and testing data dis-
tributions are the same. The performance decay from the
first to the third row demonstrates that a gap between the
training and testing data distributions can hurt the model’s
performance, but not significantly.

4.5. Applications

Since PAG can render photo-realistic images from input
point clouds, our method can be combined with recent
image-based reconstruction algorithms [42, 45] for mesh re-
construction, circumventing challenging steps in traditional
methods, such as estimating normal vectors. The first two
rows of the Figure 6 demonstrate that the Poisson recon-
struction results in meshes exhibiting artifacts, including
white spots in the texture, holes, or protruding bumps. The
third row demonstrates that the meshes reconstructed using
our approach exhibit relatively better surface details when
the two methods are comparable.

5. Conclusion and Discussion

In conclusion, this paper addresses the challenge of point
cloud rendering by devising a novel method called Point
as Gaussian (PAG). We propose the hybrid neural radiance
basis functions (H-NRBF) approach to model both local
and global information of point clouds. Our method suc-
cessfully translates a point cloud into 3D Gaussian Splats
without optimizing or fine-tuning. Extensive results demon-
strate the strong performance of the PAG model in various
scenarios. Furthermore, the PAG model offers an alternative
solution for mesh reconstruction from point clouds.

PAG successfully performs forward translation from
point clouds to 3D Gaussian Splats, laying the groundwork
for a new approach to 3D generation. By using point primi-

Poisson
Reconstruction

Input
Point Cloud

Image-Based
Reconstruction

Our Renderings

Figure 6. Visualizations of mesh reconstruction. Benefiting from
the high-quality renderings, we utilize image-based mesh recon-
struction algorithms to obtain mesh from input point clouds. Since
our method bypasses some challenges, e.g., normal estimation, in
some cases, our model produces mesh with better geometry and
colors than Poisson reconstruction.

tives to express the generated model and then transforming
the generated point cloud into 3D Gaussian Splats through
PAG, a new method is established. Additionally, the genera-
tion of point clouds is more lightweight than the generation
of mesh or signed distance functions, putting less demand
on computational resources. Consequently, this opens up a
promising avenue for future research, with substantial scope
to delve deeper into developing efficient, resource-friendly
3D generation methods. This line of investigation holds sig-
nificant potential for advancing the field of computer graph-
ics and beyond.



. Appendix

In this appendix, we present the model parameters A, ad-
ditional analysis B, and experiments C to clarify further
the performance of the methods examined in the main pa-
per. By comparing each method’s characteristics, we aim
to provide a more comprehensive understanding of their
strengths. Additionally, we explore the effect of the num-
ber of points utilized in training and testing, illuminating
the connection between point density and the overall per-
formance of the models.

A. Implementation Details

This section describes the model parameters for the Point
As Gaussian (PAG) method. The PAG model consists of
a cross-attention encoder with a learnable query token of
length 512 and dimension 768, a five-layer UNet-ViT, and
a cross-attention decoder. Each transformer layer within
the model comprises 12 heads and 64 dimensions for each
head, Layer Normalization, a Feed-Forward Network with
3072 dimensions, and a GELU activation function. The po-
sitional embedding frequency for coordinates is set to 12,
while for colors, it is set to 11. Additionally, for the local
neural radial basis function (L-NRBF), the number of near-
est neighbors is set to 24.

B. Attribute analysis

This section outlines the baselines used for comparison with
our proposed method in the main text, the attribute is illus-
trated in Table 4.

The point renderer in PyTorch3D replaces each point
with a disc rendered with varying weight values, effectively
handling cases with smooth shape and texture, allowing for
uniform disc fill between points. However, it encounters
difficulties with more complex objects.

The Triplane-Transformer, which employs a learnable
triplane and encodes point clouds with cross-attention, of-
fers high-quality global information, as evident in the visual
results. Nonetheless, querying features with point coordi-
nates in the triplane may not capture detailed texture infor-
mation, leading to blurry renderings.

Conversely, L-NRBF-MLP is a natural comparison for
Point As Gaussian (PAG), finding the nearest neighbors for
each point in the point cloud and composing the most dis-
similar one with it as local patch embeddings. The model
utilizes a two-layer MLP for predicting the radiance field.
L-NRBF-MLP better characterizes local information but
lacks global information, resulting in images with finer de-
tails but poor contours.

NPBG++ employs a 2D UNet as a neural renderer for
rendering final images, projecting point clouds into feature
maps on a 2D plane under a given viewpoint. It focuses on

modeling local patch information but struggles with render-
ing complex shapes or textures due to the scarcity of mod-
eling 3D information.

TriVol, a state-of-the-art method, models local informa-
tion by quantizing the point cloud into a voxel grid and then
employing a 3D UNet to extract information. It predicts
a neural radiance field for rendering final images. Unlike
NPBG++, the 3D UNet in TriVol models 3D information
of point clouds and volume rendering further utilizes this
information to predict the final color of pixels. However,
as point clouds are discrete, recovering the neural radiance
field from point primitives is challenging.

In such cases, 3D Gaussian Splat naturally outperforms
the neural radiance field as it can better utilize point prim-
itives. Furthermore, our proposed method, Points as Gaus-
sians (PAG), combines the advantages of the methods
above. It employs global latent sets to encode global infor-
mation of point clouds and a local neural radial basis func-
tion to characterize local information, resulting in superior
performance.

C. Point Ablation
We investigate the impact of varying the number of point
clouds used for training and testing, specifically 100k, 50k,
8192, 4096, and 2048, on the model’s performance. The
results are illustrated in Figure 7. Considering multiple
metrics, it is evident that the model achieves optimal per-
formance when training and testing utilize a more signifi-
cant number of points (100k or 50k). Moreover, the model
can generate reasonable results when training and testing
employ a similar number of point clouds. However, when
trained with more points but tested with fewer points, the
model underperforms, which might be attributed to the in-
ability of the L-NRBF obtained from such training to extract
features from two distant points in space, ultimately failing
to produce satisfactory results.



Primitive Encoding Neural Representation Decoding Render Technique

Pytorch3D [34] Points Identity - Identity Rasterization
Triplane-Transformer Points Cross Attention Triplane Grid Sample Splatting
L-NRBF-MLP Points MLP - KNN Splatting
NPBG++ [32] Points 2D UNet Multi-scale Feature Maps Identity Neural Decoding
TriVol [10] Voxels 3D UNet Triple Volumes Trilinear Interpolation Volume Rendering
Ours Points Cross Attention Hybrid RBF Cross Attention Splatting

Table 4. We present the attributes of the baselines used for comparison with our proposed method. PyTorch3D, replacing points with
discs for rendering, effectively handles smooth shapes and textures but struggles with complex objects. Triplane-Transformer, employing
a learnable triplane and cross-attention, offers high-quality global information but lacks detailed texture information. L-NRBF-MLP, a
natural comparison for Point As Gaussian (PAG), finds nearest neighbors for each point and composes local patch embeddings but has
poor contours due to its lack of global information. NPBG++ uses a 2D UNet as a neural renderer, focusing on local patch information but
struggling with rendering complex shapes or textures due to its 2D feature mapping approach. TriVol, a state-of-the-art method, models
local information by quantizing point clouds into a voxel grid and employing a 3D UNet but faces challenges in recovering the neural
radiance field from point primitives due to the discrete nature of point clouds. Our proposed method, Points as Gaussians (PAG), combines
the advantages of these methods by employing global latent sets, a local neural radial basis function, and the 3D Gaussian Splat, resulting
in superior performance.
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Figure 7. Ablation study on the number of points. We study and report the impact of varying the number of point clouds used for training
and testing (100k, 50k, 8192, 4096, and 2048) on the model’s performance. The results show that optimal performance is achieved with
more significant points (100k or 50k) and similar training and testing point counts. However, when trained with more points and tested
with fewer points, the model underperforms due to the L-NRBF’s inability to extract features from distant points in space.
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