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Figure 1. An illustration of our motivation. We propose the Magic Tailor, a latent-anchor diffusion model (LAD), which generates
high-quality 3D clothes with multiple modalities of conditional inputs, including a specific category (e.g., dress), a conditioning image,
and a textual prompt. The figure shows results generated by our LAD under different conditions and demonstrates that our model can
produce elegant results that conform to the provided conditions.

Abstract

We study conditional 3D clothes generation to synthe-
size high-quality 3D clothes models that conform to var-
ious conditions, such as clothes categories, images, and
texts. Traditional methods to generate 3D clothes depend
on registering 3D clothes to human parametric models or
predefined templates. However, this registration process in-
evitably compromises the fidelity and topology of clothes.
Thus, we propose a topology-free and computation-friendly
latent-anchor representation for 3D clothes to tackle this
restriction. Specifically, we employ a Vector Quantised-
Variational AutoEncoder (VQ-VAE) to encode each 3D
clothes model into groups of latent anchors, and each latent
anchor contains an anchor point and anchor embedding.
Based on the latent-anchor representation, we introduce a
novel two-level latent-anchor diffusion model (LAD) that
first learns a probabilistic mapping function from various
conditional inputs to anchor points. The anchor points and
conditional inputs are used to generate the anchor embed-
dings. Then, anchor points and anchor embeddings are fed
into the decoder of VQ-VAE for 3D clothes generation. Ex-
tensive experimental results demonstrate the effectiveness
of LAD in producing 3D clothes models. The codes of our

1∗Work was partially done while Zibo Zhao was a Research Intern with
Tencent PCG.

2†Corresponding author.

work will be released later to facilitate further research in
this field.

1. Introduction

3D clothing generation [92] is promising for promoting
the fashion industry, virtual try-on experiences, film pro-
duction, and 3D gaming asset design. Condition-based
3D clothing generation offers an efficient and user-friendly
method for generating 3D clothing shapes, accommodating
a range of conditional inputs such as categories, images, and
textual prompts.

Nevertheless, generating plausible 3D clothes conform-
ing to conditional inputs is a formidable challenge, and the
absence of an effective shape representation for 3D clothes
and the limited capabilities of previous generative models
on 3D garments constitute two primary obstacles for this
task. Since 3D clothes are in diverse topology structures,
conventional methods typically register each type of 3D
clothes to a template [20, 38] or a human body parametric
model [2, 56, 64, 65]. However, template-based registra-
tion inevitably compromises the fidelity of the original 3D
clothes due to the simplification of mesh topology.

In recent years, the neural field [54, 62] has demon-
strated its capability for 3D shape representation because its
topology-free data structure, such as global latent code [14,



22, 23, 39, 60] and regular or irregular grid latent code [55,
98, 103, 106], can be processed by neural networks in an
implicit functional manner. However, implicit neural rep-
resentation for 3D clothing shapes is still unexplored. In-
spired by the success of LION [101] and 3DILG [102]
for object representation, we investigate the latent-anchor
representation for 3D clothes in a topology-free and neu-
ral network-friendly manner in this paper. Specifically,
we use a Vector Quantised-Variational AutoEncoder (VQ-
VAE) [70, 90] to encode each 3D clothing into latent an-
chors consisting of latent points and latent embeddings that
can reconstruct the original 3D clothing shape with high fi-
delity. Compared to the LION [101] approach, which em-
ploys a decoder to transform the latent points into dense
point clouds and reconstruct the entity surface via an ad-
ditional shape-as-points [63] network, our latent anchors
contain more representative anchor points with richer fea-
ture descriptors of the local surface. Additionally, our de-
coder can directly reconstruct a high-fidelity 3D clothing
shape from a fixed number of latent anchors, simplifying the
decoding process while maintaining reconstruction qual-
ity. Thus, our representation is more suitable for generative
models to learn the distribution of 3D clothing shapes.

Based on the latent-anchor representation for 3D clothes,
we focus on learning the adequately capable generative
models to map the multi-modality conditions to the distri-
bution of the 3D clothing shape or its latent space. Pre-
vious approaches utilize the generative adversarial net-
work (GAN) [5, 10, 46, 93] or the variational auto-encoder
(VAE) [2, 4, 48] to model the distribution of the shape latent
codes. However, these methods have limited capabilities
in modeling various distributions, unlike generating diverse
3D clothes. Contemporaneous auto-regressive-based mod-
els [55, 98, 102] achieve surprising conditional 3D shape
generation performance but suffer from error accumulations
and linear time computational overhead in sampling.

Fortunately, the recent advancements in diffusion-based
generative models [27] have showcased remarkable suc-
cess in various domains such as image [69, 71, 72, 105],
video [17, 28], audio [37], and motion [86, 97]. The dif-
fusion models [15, 27] generate plausible results with en-
hanced diversity and stability during training without the
need for adversarial loss, as opposed to VAEs [35] or
GANs [19]. Additionally, they exhibit less error accumu-
lation compared to auto-regressive models. Moreover, the
current efficient sampling strategies, such as DDIM [82],
DPM Solver [45], and stochastic sampler [34], have re-
duced the sampling steps to fewer than 50, making them
faster than auto-regressive-based generative models. In-
spired by the success of the diffusion model, this paper pro-
poses a two-level Latent-Anchor Diffusion (LAD) model,
which leverages the effective latent-anchor representation to
synthesize plausible and diverse 3D clothing shapes that ad-

here to various conditional inputs. In particular, utilizing the
latent-anchor representation for 3D clothing, the first diffu-
sion model predicts the anchor points based on conditional
inputs. Subsequently, the second diffusion model employs
the coordinates and conditional inputs to predict the latent
embedding of each latent anchor. Then, the anchor points
and latent embeddings are fed into the VQ-VAE decoder to
generate a complete 3D clothes surface.

We summarize the contributions of this paper as follows:
1) we propose a latent-anchor representation for generating
3D clothing shapes; 2) a two-level diffusion model to learn
mapping functions from various conditions to the 3D cloth-
ing shape distribution; 3) extensive experiments demon-
strate the effectiveness of our proposed framework for 3D
clothing generation under various conditions.

2. Related Work

2.1. 3D Clothes Representation and Generation

In response to the fashion industry’s growing demand for
intelligent systems capable of generating high-quality 3D
garments, researchers are exploring methods [1, 24, 94–
96] to streamline the intricate design process, which typi-
cally involves multiple stages, such as sketching, fabric as-
sembly, and pattern creation. Despite the assistance pro-
vided by existing tools like Optitex [58] and Marvelous
Designer [52], designing clothing from scratch takes time
and effort, even for skilled professionals. Deep learning-
based approaches have recently emerged as promising so-
lutions to this challenge. Early work laid the groundwork
for achieving this objective, developing several 3D cloth-
ing datasets, such as MGN [3], TailorNet [61], SIZER [87],
CAPE [48], Cloth3D [2], DeepFashion3D [108], and Tight-
Cap [9]. Most current methods [10, 13, 40, 49–51, 100] fo-
cus on the generative reconstruction of articulated humans,
and only a few [11, 18, 67, 92] studies have directly targeted
3D clothing generation.

Prior studies have investigated two prevalent approaches
for representing clothing in generation and reconstruction
tasks. The first approach employs a template-based repre-
sentation, while the second involves mapping 3D clothing
mesh onto a parametric human body model, such as the
Skinned Multi-Person Linear (SMPL) model [43]. Regis-
tration on the SMPL mesh has become a popular method
for representing clothing in 3D generation [2], reconstruc-
tion [25, 29, 73, 74], animation [75–77, 88, 104]. In the
Cloth3D [2], arbitrary 3D clothing models were simpli-
fied and registered onto an SMPL mesh. Subsequently, the
researchers designed a generative model, the Conditional
Variational Auto-Encoder (C-VAE), to synthesize the pro-
cessed meshes. This C-VAE utilized graph convolutions to
model mesh vertices more effectively. However, mesh dis-
tortion during simplification and registration is unavoidable,



resulting in the model learning from defective information
in the dataset. Consequently, the generated clothing models
may exhibit unrealistic features, such as unclear boundaries.

These approaches [8, 57, 85, 92] devise an algorithm or
rule for mapping 3D coordinates to a 2D representation and
subsequently train a generative model on the 2D UV co-
ordinates or sewing pattern. One advantage of this repre-
sentation is the ease of leveraging powerful 2D generative
models. However, the 2D-3D mapping rule is limited to
handling limited situations. It unavoidably comprises the
topology structure, which leads to difficulty when models
synthesize plausible results when dealing with clothing that
exhibits diverse topologies. Our proposed latent-anchor dif-
fusion model offers a more effective solution for the 3D
clothing generation task than these alternative methods. By
leveraging a topology-free latent-anchor representation, our
model gets rid of handling topology structures and can gen-
erate cross-category results.

2.2. Generative Models in 3D

In recent years, generative models [6, 30, 59, 69, 72] have
gained prominence for their generation quality. Researchers
have primarily concentrated on two types of generative
models: Variational Auto-Encoders (VAEs) and Generative
Adversarial Networks (GANs) [31–33]. VAEs [89] gen-
erate 3D shapes by learning a low-dimensional latent rep-
resentation of input shapes, enabling the creation of novel
3D shapes through sampling from the learned latent space.
Various VAE-based models for 3D shape generation have
been proposed, including 3D-VAE-GAN [93] and Point-
Flow [99]. Meanwhile, GANs employ a generator network
to produce shapes resembling real 3D shapes, with a dis-
criminator network distinguishing between generated and
ground-truth shapes.

However, VAE-based methods are often limited with
restricted generative ability and are unlikely to yield di-
verse shapes, while GAN-based methods are prone to un-
stable training. Recently, auto-regressive [16, 102] mod-
els with transformer-based architectures have demonstrated
remarkable performance in conditional 3D shape genera-
tion, but they suffer from error accumulation and linear
time computational overhead during sampling. On the other
hand, several diffusion-based point cloud generation meth-
ods [47, 101, 107] reveal competitive performance. Never-
theless, these methods struggle to produce smooth surfaces
by solely manipulating points due to the high degree of free-
dom in point coordinates. Additionally, these models ne-
cessitate operating on highly dense point clouds to capture
fine-grained surface details, which is often infeasible.

To address these challenges, we propose the Latent-
Anchor Diffusion (LAD) model, which combines the ex-
pressiveness of diffusion models with the flexibility of neu-
ral fields based on the latent-anchor representation. This

approach enhances the generative model’s ability to recon-
struct high-quality surfaces, resulting in a powerful solution
for generating the 3D clothes model.

3. Method

We aim to develop a framework that generates diverse 3D
clothing based on various conditions, such as specific cat-
egories, images, and textual prompts. However, devising
a universal representation for 3D clothing is challenging,
as different clothing types may possess distinct structures,
leading to significantly different mesh topologies. Further-
more, even within the same category, variations in surface
details can result in differences in mesh vertices and faces.

To tackle this issue, we introduce the flexible latent-
anchor representation, which circumvents to handle 3D
clothing models with traditional representations (details in
Section 3.1). Thus, our model avoids cumbersome mesh op-
erators and reduces computational costs by learning the dis-
tribution of sparse yet representative latent anchors. Conse-
quently, the model exhibits enhanced effectiveness in learn-
ing the probabilistic mapping from multi-modal guidance to
the latent-anchor distribution (details in Section 3.2).

In particular, our proposed Latent-Anchor Diffusion
(LAD) model consists of two primary modules, as out-
lined in Figure 2. The first module is a Vector Quantised-
Variational AutoEncoder (VQ-VAE) that encodes each 3D
clothing model into a set of latent anchors, comprising an-
chor latents and anchor embeddings. The second module
is a two-level latent-anchor diffusion (LAD) model. The
first-level diffusion model learns to predict the anchor point
based on the conditional inputs, and a second-level one sub-
sequently predicts the anchor embedding of each latent an-
chor based on the coordinates and conditional inputs, ulti-
mately generating a 3D clothes model.

3.1. Latent-Anchor Representations for 3D Clothes

In more detail, our clothing VQ-VAE, denoted as V , is com-
posed of a clothing encoder E , a clothing decoder D and
a quantized codebook Z. The encoder contains a point-
net-like module and a transformer-based extractor, aiming
to extract anchor latent and continuous embeddings. The
codebook Z = {zj ∈ RD}Jj=1 stores J discrete embedding
zj to transform continuous embeddings into anchor embed-
dings. The decoder employs a transformer-based architec-
ture and a multi-layer perceptron (MLP) based head to re-
construct the neural field of a 3D clothes model.

Given a clothes mesh with arbitrary vertices and faces,
we randomly sample surface points Ps ∈ RN×3 on the
mesh surface and apply Farthest Point Sampling (FPS) on
the surface points Ps to produce anchor points Pc ∈
RM×3. For each anchor point pm ⊂ Pc, we find its near-
est K − 1 points from surface points Ps via K-nearest



3D Clothes Mesh

Sample Surface

Surface Points

Anchor Points

Continuous Embeddings

Latent-Anchor
Query Points Occupancy

Marching
Cubes

Reconstruction
Mesh

Anchor Embeddings

Cat

VQ-VAE !

Point-denoiser %#

Noise

Add
Noise

Noise

Add

Condition
Token

Time Steps

Positional
Encoding

Condition #

Image

Text

Learnable
EmbeddingCategory

CLIP
%%
+

%#
+

$

Query Points
Occupancy

Marching
Cubes

Generated
Mesh

Generated
Latent-Anchor

Legend

$ Clothing
Decoder

Train

Switch

Add

Add

0+

0*

*$
+

*%
+ Embedding-

denoiser %$

%$
+

*#
+

Add Add Add

Train
inference

Inference PE PE PE

Add
Noise

VQ

Codebook

PE

PE

Generated
Anchor Points

Generated
Anchor Embeddings

Anchor Points

Anchor Embeddings

VQ Vector
Quantization

Latent-Anchor Diffusion Model

ℰ "

Vector
Quantize

Point
Net

Extractor
Bottle
Neck Head

Figure 2. Network Overview. Our Latent-Anchor Diffusion (LAD) model comprises a VQ-VAE V (detailed in Section 3.1) and a two-
level diffusion model G (described in Section 3.2). The model employs a two-stage training strategy. In the first stage, the focus is on
learning the latent-anchor representation of 3D clothing meshes, wherein the encoder E encodes 3D clothing into anchor points and anchor
embeddings, which decodes to the 3D clothing shape via the decoder D. The second stage involves the two-level latent-anchor diffusion
model learning distribution anchor point and anchor embedding. During the inference phase, the latent-anchor diffusion model predicts the
latent anchors, efficiently reconstructed into the 3D clothes by the decoder.

neighbor and form a clustered patch with K points, in-
cluding the anchor point pm. Subsequently, a point-net-
like [66] module consisting two-layer MLPs to extract a
feature fm ∈ RC , and ultimately produces the point-feature
pair {pm, fm}Mm=1. The extractor further extracts continu-
ous embeddings Z̃ = {z̃m ∈ RD}Mm=1. Performing an
element-wise quantize operation Q(·) on each z̃m, we query
the discrete anchor embedding Ẑ = {ẑm ∈ RD}Mm=1 from
the quantized codebook Z:

Ẑ = Q(Z̃) = {argmin
zj∈Z

∥z̃m − zj∥}Mm=1. (1)

We define the latent-anchor representation of clothes
by pairing anchor points Pc and the anchor embeddings Ẑ:

{Pc, Ẑ} = {pm ∈ R3, ẑm ∈ RD}Mm=1. (2)

Each sub-pair {pm, ẑm} effectively represents local infor-
mation for the 3D clothing, providing a compact and ex-
pressive representation for the modeling process.

After processing through the clothing decoder, D, the la-
tent anchor is converted into a weight indicating whether a
query point x resides inside or outside the clothing. Specif-
ically, we employ MLPs with a sigmoid activation function
as the classifier to predict the result. During the inference,
we sample all grid points within a volume as query points
and predict their indicators based on the latent anchors. Fi-
nally, we use contouring methods, marching cubes [44] to
obtain a 3D clothes mesh.

We optimize the clothing VQ-VAE V by a binary-cross-
entropy loss LBCE , criticing the predicted and ground-
truth, and a reconstruction regularization to maximize the

representation capacity of the constructed latent anchor.
Moreover, we train the model with two distinct types of re-
construction regularization. The first of these is the com-
mitment loss, denoted as:

LV Q = ∥sg[Ẑ]− E(Ps)∥2, (3)

where sg[·] denotes a stop-gradient operation. The sec-
ond type of reconstruction regularization is the Kullback-
Leibler divergence loss, denoted as LKL. Training the
model with both LBCE and LKL essentially reduces it to
a Variational AutoEncoder (VAE) without a vector quanti-
zation operation. Table 3 shows that the VQ-VAE scheme
demonstrates superior representation capabilities. Thus, we
employ it in the subsequent generative process.

3.2. Conditional Latent-Anchor Diffusion Model

Diffusion Models [27] models a Markov noising process
and learns the data distribution p(x) through a sequence of
denoising operations that convert Gaussian noise to a real
signal. Inspired by the similarity between particles in a ther-
modynamic system [81] and points in a point cloud, prior
works [47, 107] have introduced diffusion models for syn-
thesizing point clouds. These generative models Gθ(xt, t)
train to predict a denoised variant with input xt, where xt

denotes a disturbed x0 and t = {1, 2, ..., T}. The corre-
sponding objective can be reduced to an L2 loss between
the input and noise ϵ as:

L2 = ∥ϵ− Gθ(xt, t)∥22, ϵ ∼ N (0, 1), (4)

where t uniformly samples from {1, 2, ..., T}.



Conditional Latent-Anchor Diffusion Models. We de-
vise the diffusion model based on a time-conditional trans-
former architecture. By representing 3D clothing via the
latent anchor, {Pc, Ẑ}, the diffusion model learns on the la-
tent anchor’s distribution, enhancing its generative capacity
while reducing its computational cost.

Since the anchor point Pc represents explicit shape infor-
mation, and the anchor embeddings Ẑ are high-dimension
features providing implicit shape information, a domain gap
exists between the anchor points distribution and the anchor
embeddings distribution. It leads to difficulties in training
the generative model. Thus, we introduce our two-level
Latent-Anchor Diffusion (LAD) Model, G = {Gp,Gz} to
enable the diffusion model to reach optimal generative ca-
pabilities. In this model, the point-denoiser Gp focuses on
learning the anchor point Pc exclusively, while embedding-
denoiser Gz is responsible for generating anchor embed-
dings using Pc produced by Gp.

Moreover, unconditional generative models [19, 83, 84]
are far from users’ requirements in many scenarios, as the
generated content might not adhere to semantic guidance
or even a rudimentary category condition. Thus, we devise
the conditional latent-anchor diffusion model, with condi-
tion input denoted as c. The conditions could be specific
categories, an image, and a text.

Similar to previous methods [69, 86], both the point-
denoiser Gp and the embedding-denoiser Gz predict the
starting signal when given any noisy version and conditions.
Specifically, we adopt the original objective 4 as follows:

LGp
= ∥Pc − Gp(Pt, c, t)∥22,

LGz = ∥Ẑ − Gz(Ẑt, Pc, c, t)∥22, (5)

where Pt denotes a disturbed Pc, Ẑt denotes a disturbed Ẑ
and t = {1, 2, ..., T}.

Following the classifier-free guidance (CFG) [26], we
randomly set the conditions as empty set ϕ to the model
with 10% probability in the training phase. In the inference
stage, the model generates latent anchors {Pc, Ẑ} with CFG
with a guidance weight λ to balance generative diversity and
quality. For example, when sampling anchor points Pc, the
CFG process expresses as:

Gp(Pt, c, t) = Gp(Pt, ϕ, t) + λ(Gp(Pt, c, t)−Gp(Pt, ϕ, t).)
(6)

3.3. 3D Clothing Generation with Various Condi-
tions

Category-Conditioned generation refers to generating
3D clothing within a specific category. By capitalizing on
flexible transformer architectures, we prepend the condi-
tional token to the beginning of the sequence in the LAD. In
particular, the conditional token adds the time step and cat-

egory embedding, which allows the model to incorporate
specific category information during the denoising process.

Image- and text-Conditioned generation aims to gen-
erate 3D clothes that conforms to a target image I ∈
RH×W×3. We employ the powerful pre-trained vision-
language model CLIP [68] to extract discriminative con-
ditional features to the LAD model’s ability. In this con-
text, we denote the CLIP image encoder as Ei, which facili-
tates the conversion of cross-modal information into a vec-
tor. The condition token adds the time step embedding and
the CLIP embedding. Moreover, the CLIP image encoder’s
training aligns with the CLIP text encoder’s domain, sug-
gesting that once a model has mapped a distribution to the
CLIP feature domain, it can handle two modalities. During
training, we employ the CLIP image encoder to facilitate
accepting a prompt as input in subsequent experiments. Im-
portantly, our experiments demonstrate that the CLIP image
encoder enables the LAD model to generate 3D clothing
based on a textual prompt. Ultimately, the decoder D re-
constructs 3D clothes corresponding to the sampled latent
anchors.

3.4. Training and Inference

The clothing VQ-VAE comprises two six-layer transformer
encoders. One integrates the extractor in the clothing en-
coder with a point-net-like module. At the same time, the
other incorporates into the bottleneck of the clothing de-
coder, followed by an eight-layer MLP for reconstructing
the neural field of 3D clothing. Both diffusion models in the
two-level latent-anchor diffusion model employ an eight-
layer transformer encoder to execute the diffusion process.
Specifically, seven learnable embeddings integrated into the
model correspond to seven clothes categories, and we uti-
lize a frozen CLIP (ViT-B/32) to extract conditional infor-
mation from a given image or text. Our diffusion models
train with T = 1000 noising steps and a cosine noise sched-
ule. All code is based on PyTorch and tested on two GPUs:
NVIDIA GeForce RTX2080Ti and NVIDIA TITAN RTX.
More details can be found in the supplementary.

In the training phase, we learn the VQ-VAE and the two-
level diffusion model. In the inference phase, given the con-
ditional input, we first encode the input condition and feed it
into the diffusion model to get the anchor points and anchor
embeddings, which are fed into the decoder of VQ-VAE D
to generate 3D clothes corresponding to the input condition.

4. Experiments
4.1. Datasets

We employ the Cloth3D dataset [2] to validate our model.
This dataset offers an extensive collection of 3D clothing
meshes stored as quadrilateral meshes, each with distinct
topology and metadata such as a category, texture, and com-



patible body shape (expressed as SMPL parameters). 3D
clothes items are classified into six categories: dress, jump-
suit, t-shirt, top, trousers, and skirt. The training set com-
prises 8634 meshes, while the testing set contains 1345. To
better evaluate our model, we thicken the mesh. Since we
aim to develop a model for various generation tasks, we fur-
ther render the mesh into a 2D image with a resolution of
5122 by Blender [12] and register the SMPL model with our
processed meshes. The preprocessing details are present
in the supplementary. We optimize the clothing VQ-VAE
and generative latent-anchor diffusion (LAD) model on the
training set and assess their performance on the test set.

4.2. Experimental Setup

Baselines. We employ three baselines in our study:
DPC [47], PVD [107], and 3DILG [102]. It is important to
note that DPC and PVD are designed for point-cloud gener-
ation tasks, where the point scale is too small to generate a
mesh. Therefore, we modify them slightly to learn about the
latent-anchor distribution, the same distribution learned by
our LAD, and provide the same pre-trained clothing VQ-
VAE to encode 3D clothes into latent anchors and recon-
struct the final 3D clothing for a fair comparison. Addi-
tionally, we select 3DILG as another baseline to investigate
the effectiveness of the auto-regressive scheme and diffu-
sion process for fitting the latent-anchor distribution. Simi-
larly, the auto-regressive model learns on the latent-anchor
representation, and both models decode 3D clothing using
the sample clothing VQ-VAE.

Metrics. Following previous works [5, 36, 99], we
employ chamfer distance (CD) and earth mover’s distance
(EMD) for evaluation. As described in PVD [107], we cal-
culate 1-nearest neighbor (1-NN) to assess generative qual-
ity in the category-conditioned generation task. Notably, a
1-NN score closer to 50 indicates better quality. We report
the chamfer distance on image-conditioned generation re-
sults, where a lower value indicates superior quality.

4.3. Results and Analysis

Characteristic Comparison We compare IG [92],
Cloth3d [2], GGUSPI [80], PBM [100], SMPLicit [13],
and NSM [11], in terms of characteristics with our method.
As listed in Table 1, all baselines attempt to bypass
operating mesh by leveraging explicit representations,
such as registering clothes on human body or projecting
onto human body-aligned sewing patterns and UV coor-
dinates. However, these methods require generating the
3D clothes binding with a given human body. Moreover,
some methods require heavy computation resources due
to executing on dense point-cloud. This characteristic
further prevents the extension of these methods, which
runs counter to developing a versatile generative model. In
contrast, our approaches represent 3D clothes in a flexible

Characteristics Topology Free Body Shape Sewing Pattern Image Prompt
IG [92] Limited Required Required Limited No

Cloth3d [2] No Required No No No
GGUSPI [80] Yes Required Required Limited No

PBM [100] Limited Required No Support No
SMPLicit [13] Limited Required No No No

NSM [11] Yes No Required Support No
Ours Yes No No Support Support

Table 1. Characteristic comparisons. Most baselines require
generating 3D clothes with human bodies or expensive computa-
tion resources since they heavily rely on representing 3D clothes
by body shapes, registered point clouds, or sewing patterns. In
contrast, our proposed latent-anchor representation is topology-
free and computation-friendly, which could handle up to three
modality conditions, like specific category, image, and prompt.

Dress Jumpsuit Tshirt Top Trousers Skirt

CD EMD CD EMD CD EMD CD EMD CD EMD CD EMD
DPC [47] 100.00 94.58 99.05 92.98 100.00 97.77 100.00 98.23 100.00 98.09 99.05 93.69

PVD [107] 93.83 97.22 92.05 96.67 91.50 92.83 98.96 97.97 96.52 95.45 98.68 100
3DILG [102] 85.08 84.21 80.64 84.55 85.27 82.25 83.87 84.55 90.47 84.12 82.83 84.33

Ours 82.4 80.81 87.09 81.45 85.00 82.57 83.73 83.05 86.44 87.70 93.54 88.18

Table 2. Quantitative Comparison for Category-Conditioned
Generation. This table showcases a numerical comparison of the
1-NN accuracy between the LAD and baselines across each condi-
tioning category, with the 1-NN accuracy indicating general shape
quality. LAD substantially improves over the first two baselines
while partially outperforming 3DILG.

and topology-free manner. Besides, the latent-anchor
representation has a lot of underlying applications related
to 3D clothes, like the synthesis of texture 3D clothes or
simulation of the clothes with motion sequences, due to its
topology-free properties and plug-and-play characteristics.

Category-Conditioned Generation Comparison We
present the quantitative results for each method in the
category-conditioned generation task in Table 2. Our
transformer-based two-level diffusion model achieves su-
perior generative quality compared to the two diffusion
paradigms, DPC [47] and PVD [107]. Furthermore, our
LAD model outperforms, in most cases compared to the
auto-regressive approach 3DILG [102]. We analyze the
result based on the dataset’s statistics. Compared to the
2037 dress meshes in the training set, there are only 468
skirt meshes. As the diffusion model necessitates substan-
tial training data to learn the Markov process, training with
limited data might negatively affect performance. Nev-
ertheless, our LAD excels in most categories. The dis-
tinction between the qualitative results of our method and
3DILG [102] is evident, as illustrated in Figure 3. Although
3DILG generates clothing with smooth surfaces, it exhibits
imperfections in local patches. Auto-regressive schemes
predict subsequent latent anchors based on previous predic-
tions, introducing uncertainty and resulting in error accu-
mulation, which may cause noisy patches to appear near the
end of the inference process or even earlier. Another piece
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Figure 3. Qualitative Comparison for Category-Conditioning Generation. We present rendered images of the generated meshes for
visual comparisons, displaying each mesh from the front and back views. Additionally, we showcase the latent anchor by its coordinates,
which directly correspond to the distortion observed in the mesh. From left to right, we show results from DPC, PVD, 3DILG, and our
LAD. The first two diffusion-based models generate only rough shapes, with the latent anchor associated with the defective areas on the
mesh. 3DILG outperforms the previous methods, producing plausible shapes that are also evident in the latent anchor. However, it fails to
create a smooth surface due to the non-uniform nature of the generated anchor (visualized in the magnifier). In contrast, our LAD generates
elegant shapes with fine details, demonstrating superior performance in the comparison. Zoom in for more details.
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Figure 4. Qualitative Comparison on Image-Conditioned Generation. We select three cases to compare our results with other baselines.
The condition images are displayed on the left. A notable difference from category-conditioned generation is that all baselines exhibit
improved performance. However, the enhancement is minor, as DPC and PVD can only generate plausible shapes with fluctuating surfaces.
At the same time, their unevenly generated latent anchors are also non-uniform (only the front view shown here). When guided by an image,
3DILG produces better results but exhibits a coarse boundary. In contrast, our method generates meshes with plausible shapes and smooth
surfaces (visualized in the magnifier), outperforming the other approaches. Zoom in for more details.

Figure 5. Quantitative Comparison on Image-conditioned gen-
eration. We employ chamfer distance to assess the results, and the
value show that our method outperforms the others.

of evidence is the asymmetric latent anchors generated by
3DILG. In contrast, our LAD model predicts all latent an-
chors in a uniform and symmetric layout through an itera-
tive denoising process. The other two diffusion-based meth-
ods [47, 107] generate meshes of inferior quality. A possi-
ble explanation is that these models do not account for low
information density conditions during development. Conse-
quently, when conditioned on the category embedding, the
models struggle to fit the distribution of each category. As
a result, only our LAD can produce 3D clothing with fine
details.

Image-Conditioned Generation Comparison The
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Figure 6. Visualization for Editing 3D Clothes by Manipulating Latent Anchors. The figure’s left shows three ways to manipulate
latent anchors for editing 3D clothes. The first and second columns under output indicate combining two latent anchors in sorted order,
and the third column showcases combining randomly. The right figure shows the results of mixing clothes from different categories. The
visual results demonstrate the flexibility of our latent-anchor representation.
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Figure 7. Text-Conditioned Generation. The figure presents the
outcomes of the text-conditioned generation process. Based on the
corresponding prompts, our model generates results that closely
align with the semantic context. Zoom in for more details.

quantitative results in Table 5 indicate that our LAD model
achieves the lowest chamfer distance and outperforms all
other comparison methods. The qualitative comparison be-
tween LAD and baselines, as shown in Figure 4, supports
this conclusion. When the condition type changes from low
information density category embeddings to more informa-
tive image embeddings, the results of all baselines improve.
However, upon closer examination, DPC and PVD can only
generate plausible shapes, while 3DILG produces better re-
sults but still exhibits flaws in local patches. In contrast, our
LAD generates accurate shapes with fine details preserved
on the clothing surface.

Text-conditioned Generation. Benefiting from the
CLIP, our LAD can directly employ a pre-trained text en-
coder. CLIP aligns its feature space between visual and tex-
tual inputs, enabling our LAD to generate 3D clothing using
text input. We present visual results in Figure 7. These vi-
sual outcomes indicate that our model can produce results
conform with the prompt input. However, due to the lack
of text-3D clothes pair, we have to train our model with
CLIP encoder as bridges, which limits the generative abil-
ity of our model. With the enlarging of 3D clothes database,
these knotty problem will great waken.

Clothes Editing via Manipulating Latent Anchors.

Commitment Loss (VQ-VAE) KL-Divergence (VAE)

1024 512 256 128 1024 512 256 128
OverAll 89.08 90.02 85.95 76.00 89.76 88.90 85.57 78.72

Dress 86.19 87.23 82.17 69.64 86.77 85.81 81.91 72.65
Jumpsuit 89.98 91.05 87.72 79.44 90.53 90.09 87.27 81.57

Tshirt 90.20 91.63 88.41 80.02 90.85 90.68 87.84 82.61
Trousers 90.32 90.66 86.49 76.47 91.08 89.58 85.99 79.37

Top 90.38 91.46 87.41 79.43 91.46 90.61 87.32 81.80
Skirt 85.03 85.22 78.88 62.14 85.86 83.39 79.02 67.22

Table 3. Ablation Study. We perform an ablation study on the
auto-encoder architecture utilized for latent-anchor representation,
primarily investigating the number of latent anchors and the ob-
jective. The results span six categories, suggesting that a VQ-VAE
with 512 latent anchors constitutes the optimal architecture.

Our latent-anchor representation enables the model to ma-
nipulate the generated mesh. As illustrated in the left of
Figure 6, the model produces two groups of latent anchors,
we pick partial latent anchors from each one and merge the
picked as a new latent anchor, where the expressive latent-
anchor representation ensures qualified results. Moreover, it
also ensures cross-category manipulation, demonstrated in
the right from Figure 6. Due to the decoder reconstructing
the generated latent anchor without a claimed specific cat-
egory, we can first mix latent anchors from two categories,
use the target mesh category as a condition for generating a
group of anchor features, and then send them to the decoder
for generating the target 3D clothes mesh.

4.4. Ablation

We examine auto-encoder architectures 3.1 by investigating
the impact of the anchor point’s number and objectives. We
assess each combination’s performance through reconstruc-
tion tasks on the test set with the Intersection over Union
(IoU) metric, where a higher IoU signifies a better perfor-
mance. Based on Table3 results, we develop our clothing in
the VQ-VAE approach and employ 512 latent anchors for
subsequent generations.



5. Conclusion
We propose Magic Tailor for generating 3D clothes that
accommodate various conditions, including clothes cate-
gories, images, and textual descriptions. Our framework
employs a VQ-VAE module to encode diverse 3D clothing
shapes within a compatible latent-anchor representation and
learns a two-level diffusion model over the latent anchors’
space, facilitating the efficient mapping of various condi-
tions to the 3D clothing space. Comprehensive experiments
on multi-modal conditioned 3D clothing generation tasks
demonstrate the effectiveness of our proposed framework.

6. Limitations
This paper provides preliminary evidence of the feasibility
of the latent-anchor representation, but there are still two
directions worth exploring. The first aspect concerns the
modeling of 3D clothes. This paper uses watertight mesh
as a trade-off to investigate the approach better. A mean-
ingful future research direction would be to combine this
method with non-watertight mesh [7, 21, 41, 42, 53, 78, 79]
for 3D clothes generation. Another direction is the gen-
eration of textured 3D clothes, which would enhance the
practical value of the resulting models.



Magic Tailor: a Latent-Anchor based Diffusion Model for 3D Clothes Generation

Supplementary Material

In the supplementary, we describe the data preparation in
section A and the Training details of Magic Tailor B. Fur-
thermore, extensive visual results are illustrated in section
C.

A. Data Preparation
We follow DualOctreeGNN [91] to convert the raw mesh

from Cloth3D into watertight mesh to train the neural occu-
pancy field and normalize all vertices inside [−1, 1]. We uti-
lize the pysdf3 to compute a groundtruth occupancy for the
query point. Moreover, we pre-sample the surface points,
query points, and labels of query points to accelerate train-
ing.

B. Training Details
While training the clothing VQ-VAE, we sampled sur-

face points Ps ∈ RN×3 with N = 2048 as input and 2048
query points with their label as supervisions. The number
of anchor points Pc ∈ RM×3 is M = 512, the codebook
Z = {zj ∈ RD}Jj=1 stores J = 1024 discrete embedding
in dimension D = 256. The AdamW optimizer has a 1e-3
learning rate.

While training the two-level Latent-anchor-based Diffu-
sion Model (LAD), we set eight transformer encoder layers
with 512 latent dimensions for both point- and embedding-
denoisers, and the sequence length is 512. Furthermore,
each denoiser has an AdamW optimizer with a 1e-4 learn-
ing rate.

C. More Visual Results
We provide more visual results to demonstrate the quality

of the generated clothes in the following.

C.1. Category-conditioned 3D Clothes Generation

Dress. Figure 8, 9, and 10 show the results conditioning
on the category ”Dress”.

Jumpsuit. Figure 11, 12, and 13 show the results con-
ditioning on the category ”Jumpsuit”.

Tshirt. Figure 14 shows the results conditioning on the
category ”Tshirt”.

Trousers. Figure 15 shows the results conditioning on
the category ”Trousers”.

Top. Figure 16 shows the results conditioning on the
category ”Top”.

Skirt. Figure 17 shows the results conditioning on the
category ”Skirt”.

3https://github.com/andreasBihlmaier/pysdf

C.2. Image-conditioned 3D clothes generation

Figure 18, 19, and 20 show the results conditioning on
the image.



Front
View

Behind
View

Side
View

Top
Bottom

Figure 8. Conditional generation on category Dress.



Front
View

Behind
View

Side
View

Top
Bottom

Figure 9. Conditional generation on category Dress.
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Figure 10. Conditional generation on category Dress.
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Figure 11. Conditional generation on category Jumpsuit.
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Figure 12. Conditional generation on category Jumpsuit.
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Figure 13. Conditional generation on category Jumpsuit.
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Figure 14. Conditional generation on category Tshirt.
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Figure 15. Conditional generation on category Trousers.
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Figure 16. Conditional generation on category Top.
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Figure 17. Conditional generation on category Skirt.



Behind ViewFront View Side ViewImage
Top View

Bottom View

Figure 18. Images conditioning generation.
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Figure 19. Images conditioning generation.
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Figure 20. Images conditioning generation.
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